ROLE OF FINE NEEDLE ASPIRATION CYTOLOGY AS AN INITIAL DIAGNOSTIC TOOL IN MUSCULOSKELETAL TUMOURS

Dr. Sabari Devi, Dr. Sukalyan Dey*, Dr. Partha Sarathi Chakrabarty
Department of Pathology, Gauhati Medical College & Hospital, Guwahati, India.
*Department of Orthopaedics, Gauhati Medical College & Hospital, Guwahati, India
Department of Orthopaedics, Gauhati Medical College & Hospital, Guwahati, India

Abstract

Purpose: Inadequate sampling, equivocal cytological features and lack of confirmation with histopathological examination perpetuate long-standing controversy regarding the utility of FNAC in diagnosing skeletal neoplasms. In this study, we tried to conclusively determine its utility and limitations by analysing the diagnostic concordance between FNAC and open biopsy in each of 216 cases of bone tumours.

Materials and Methods: 216 consecutive cases of clinicoradiologically suspected bone tumours were evaluated by FNAC and followed up with histopathology of the excised tissue from suspected lesion. The cytological diagnoses were classified as conclusive, doubtful and inadequate and were compared with that of histopathological examination.

Results: 97.8% of diagnoses (n=178) in the conclusive group (n=182) showed cyto-histological concordance. Sensitivity in diagnosing malignant bone tumours from conclusive smears was 98.78 while specificity was 88.89. Doubtful group (3.24%, n=7) mainly consisted of cartilaginous tumours. The inadequate group (12.5%, n=27) had either scanty cells (37.04%, n=10) or hemorrhagic smear (62.96%, n=17).

Conclusion: When the findings are conclusive FNAC provides accurate diagnosis in suspected bone tumours which can be safely relied upon for planning further management. However, further diagnostic procedures in the form of HPE or cytogenetic studies should be sought in cases of equivocal results or inadequate sampling.

Introduction

Fine needle aspiration cytology is a method in which cells and tissue fluid are extracted from a tumour or lesion using a syringe and fine needle. It is a simple, safe and quick procedure. Its role as a diagnostic modality has been well established in tumours in soft tissue organs like breast, thyroid and lymph nodes. In cases of bone tumours as well, it has gained wide acceptance. Martin and Ellis¹ first applied this technique to the diagnosis of bone lesions in 1930. Since then, several published series have yielded overall accuracy values ranging from 51% to 100%.²⁻²¹ However it is yet to be established how accurately FNAC can give conclusive diagnosis of bone tumours. There is no clear consensus yet whether FNAC can be the final and definitive investigation to diagnose a skeletal neoplasm or deny its possibility. Several factors have led to this. Performance and interpretation of FNAC of bony lesions require considerable experience and training. Inadequate sampling and equivocal cytological interpretation have long been impeding its widespread usage. Above all, to establish strong evidence, comparison of result of each and every case with that of a gold standard procedure, namely histopathological study is required. We have carried out the study over a period of five years consisting of 216 cases of suspected bone tumour and correlated the findings of each case to its clinicoradiological and histopathological findings to understand the role of FNAC in its entirety.
Materials and methods
A total of 216 consecutive patients with clinico-radiological features of bone tumours were selected for the study. Written informed consent was obtained from each of the patients. The radiological criteria were thinned out cortex of bone or/and cortical break with or without soft tissue involvement. After explaining the procedure to the patient, the lesion was located by palpation. The site of needle placement was marked and its direction and trajectory was ascertained. The exact location and trajectory depended on a number of factors. It had to be ensured that the fine bore needle encountered least resistance while reaching the tumour site, by passing the needle through the area where the bone destruction was maximum. It had to be away from the plane of neurovascular structures. The puncture site was kept, as far as possible in the line of incision for future surgery so that the possible spillage of the tumour cells might be excised in toto during the surgery. Effort was always made to aim the needle at the edge of the lesion as the centre of the mass was likely to contain only the necrotic tissue. Adult patients did not need any local anaesthesia or sedation, but for children sedation was required. Skin disinfection was carried out with 5% providone iodine and spirit. A fine needle with plunger was inserted with the bevelled end up. It was passed into the mass. A 20cc syringe was connected and suction was applied with small amplitude to and fro oscillations to scrape off small bits of tissue and push the same into the needle barrel. In case of suspected highly vascular lesions, the procedure was carried out rapidly to avoid damaging the blood vessels ending in useless bloody tap. The suction was immediately terminated if a drop of blood or fluid appeared on the translucent part of the needle. After releasing the suction, the needle was gradually withdrawn. The aspirated material was expelled to a minimum of two glass slides before it dried. For each aspirate, four smears were prepared. Of these, two were air dried and stained by May-Grunwald-Giemsa method. The other two were immediately fixed in ethanol and stained later by Papaniculau’s method. In addition to the above mentioned routine stains; cytochemical stains like reticulin (Gomori’s), alkaline phosphatase, Periodic acid Schiff (PAS) with without diastase and mucicarmine were employed to support the diagnosis wherever necessary. Reporting: the reports of the pathological specimens were classified into following groups:
1. Conclusive: Cytological findings are clearly suggestive of a diagnosis.
2. Doubtful: The cytological findings are equivocal and fail to point to a diagnosis.
3. Inadequate smear: The amount or quality of smear obtained precludes proper cytological examination.

In each of the cases, biopsy was carried out. Some of them (n= 74) had to be performed before the definitive surgery. In others specimens were obtained from the excised or curetted tissues during the definitive surgery. For histopathological examination, tissues were embedded in paraffin blocks, sliced into 2-3 micron sections and stained with routine Hematoxylin and Eosin staining and examined under microscope. The histopathological examination was carried out in blinded manner so as to eliminate the possibility of a biased presumption based on the cytological findings. Finally, the three methods of diagnosis viz. Clinicoradiological, Histopathological and Cytological findings were compared.
Results and Discussion
The study population consisted of subjects from diverse age groups. The youngest subject was 4 years old and the oldest one was 76 years old (mean 31.4 years). It showed a slight male preponderance (57.41% or 124 males vs 42.59% or 92 females). All the patients presented with swelling while some of them (96%) also had associated pain also. 6% of patients (n = 13) had pathological fracture. The mean duration of pain was 3 months (range: 14 days – 2 years). Figure 1 shows the distribution of the swelling and accordingly the site of aspiration.
Out of 216 aspirates, 189 (87.5%) yielded satisfactory smears. The rest 12.5% were unsatisfactory smears which consisted of blood in the smears (n=17) and scanty aspirated material (n=10). Out of the satisfactory smears the cytological examination conclusively diagnosed 182 cases (84.26% of total 216 cases), while in 7 cases the diagnosis was doubtful. On carrying out the histopathological examination, 178 cases out of 182 conclusive cases were verified to be correct with an accuracy of 97.8%. The cytological interpretation was 98.78% sensitive and 88.89% specific in diagnosing malignant bone tumours. The positive predictive value was 0.99 while the negative predictive value was 0.89. Table 1 shows the total final diagnosis of all the cases and those diagnosed by FNAC.
Table 1: The final diagnoses of all cases* and correct FNAC diagnosis

<table>
<thead>
<tr>
<th>Bone lesions as per Final Diagnosis (HPE)</th>
<th>Final Diagnosis (n)</th>
<th>Diagnosed by FNAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteosarcoma</td>
<td>34</td>
<td>28</td>
</tr>
<tr>
<td>Metastatic Bone Tumour</td>
<td>39</td>
<td>37</td>
</tr>
<tr>
<td>Chondrosarcoma</td>
<td>28</td>
<td>19</td>
</tr>
<tr>
<td>Giant Cell Tumour</td>
<td>38</td>
<td>35</td>
</tr>
<tr>
<td>Ewing’s sarcoma</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>Lymphoma of the Bone</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Chondromyxoid fibroma</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Synovial sarcoma</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Plasmacytoma</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Aneurysmal Bone Cyst</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Fibrosarcoma</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Osteomyelitis</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Others</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Total :</td>
<td>216</td>
<td>178</td>
</tr>
</tbody>
</table>

* All cases including conclusive, doubtful and inadequate smears.

Osteosarcoma and giant cell tumours were the most common primary bone lesions. Figures 1-4 show their cytological and histological findings.

Fig:3 : Photomicrograph showing FNAC of Giant Cell Tumour MCG Stain (x200)
Figure 4: Photomicrograph showing histopathological section from the same lesion of Giant Cell Tumour, H&E (x200)

Figure 5: Photomicrograph showing FNAC of osteosarcoma MCG Stain (x200)
There were two false positive cases. We investigated the discordant cases thoroughly to determine the contributory factors and limitation of the procedure. The first one was a case of osteolytic lesion in the D12 vertebral body which was suspected to be a metastatic lesion. Cytological features showed few mononuclear cells, some of which demonstrated moderate atypia and abundant necrosis, which should have been ideally classified as equivocal. Subsequent histopathological examination diagnosed it to be an inflammatory lesion. The second case was a suspected osteosarcoma in FNAC with immature woven bone at places. But in histopathological examination, it was diagnosed to be a heterotropic ossification.

There were two false negative cases in the study. The first case was a case of eosinophilic granuloma which was initially showed the characteristics of inflammatory lesion in FNAC. The second case was diagnosed as a case of osteomyelitis in FNAC. But on histopathological examination it was diagnosed as Ewing’s sarcoma.

All the metastatic tumours were diagnosed conclusively by FNAC.

The second group of the cytological interpretation consisted of those smears which revealed inconclusive findings. All those cases were diagnosed by the histopathological examination. Seven such cases were encountered. Table 2 shows the differential diagnoses in FNAC along with final diagnosis by subsequent biopsy.

<table>
<thead>
<tr>
<th>SI No.</th>
<th>Differential Diagnoses</th>
<th>Final diagnosis (HPE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Giant cell tumour v/s Aneurysmal bone cyst</td>
<td>Giant cell tumour</td>
</tr>
<tr>
<td>2.</td>
<td>Giant cell tumour v/s Aneurysmal bone cyst</td>
<td>Aneurysmal bone cyst</td>
</tr>
<tr>
<td>3.</td>
<td>Giant cell tumour v/s Aneurysmal bone cyst</td>
<td>Giant cell tumour</td>
</tr>
<tr>
<td>4.</td>
<td>Chondroma v/s Chondrosarcoma</td>
<td>Chondrosarcoma</td>
</tr>
<tr>
<td>5.</td>
<td>Chondrosarcoma v/s Osteosarcoma</td>
<td>Osteosarcoma</td>
</tr>
<tr>
<td>6.</td>
<td>Chondroblastoma v/s Chondrosarcoma</td>
<td>Chondroblastoma</td>
</tr>
<tr>
<td>7.</td>
<td>Neuroblastoma of the bone v/s Ewing’s sarcoma</td>
<td>Ewing’s sarcoma</td>
</tr>
</tbody>
</table>
Many of the aspirations were extremely paucicellular. Of these aspirations with scanty cells, the majority (78%) were osteosclerotic lesions. FNAC has a limited role in such cases unless supplemented by other techniques such as image guidance. The second category of the aspirations rendered inadequate smears were vascular lesions that led to a bloody tap, where blood obscured the whole tumour cytology. After clinicoradiological and histopathological correlation, such lesions were found to be simple bone cyst, aneurysmal bone cyst, telangiectatic osteosarcoma and giant cell tumour with large areas of haemorrhage and necrosis. Pain was the most common complaint after the procedure. 12% of cases (n=26) complained of severe pain while the rest experienced only mild to moderate pain. Hematomas appeared in 6% of cases (n=13) all of which regressed spontaneously within ten days. The coagulation profiles of all patients were found to be normal. There was no incidence of nerve or vascular injury through the procedure.

Discussion

Tissue for diagnosis of bone lesions can be easily obtained by FNAC, core biopsy, or open biopsy as in lesions in other parts of the body. A closed biopsy is associated with a lower morbidity rate and is safer than open biopsy.11 FNAC using a narrow bore needle is associated with a lower risk of tumour seeding in comparison to core4,6 or open biopsies.11 Due to minimal disruption of the soft tissue barriers and spillage of the tumour cells, possibilities for the salvage of the affected limb improve compared to other more invasive procedures. As the aspiration wound is not endangered, treatment with radiation and/or chemotherapy can be initiated without any delay. It can drastically curtail the financial burden associated with bone tumours, as it can be performed as an outpatient procedure without the need of sophisticated equipments or anaesthesia. Complications are few and multiple specimens can be obtained without increased morbidity.18 In addition, the adequacy of the specimens can be determined on spot by microscopic examination and repeat aspirations can be performed at the same sitting.

In worldwide literature review, it found that accuracy values for FNAC in diagnosing bone tumours have been from 51% to 100%. However in most of the studies, one to one histological confirmation was not performed, especially in those cases where cytological features gave a clear picture that corroborated with clinicoradiological suspicions. But that fails to provide a strong objective evidence of the accuracy of FNAC. This study differs from the previous ones as each of the cases included in the study was followed up with a histopathological examination regardless of the cytological findings or clinical and radiological characteristics. Moreover the biopsy was performed in a blinded manner to preclude any bias. Even the smears which were found to be inadequate and those which gave false positive or false negative diagnoses were analysed so as to reach a conclusion as to understand the limitations of the procedure fully.

In a study by Agrawal et al involving 229 cases of FNAC, overall sensitivity and specificity were 86% and 94.7% respectively23. There was 1 false positive and 29 false negative report out of 159 specific morphologic diagnoses through fine needle aspiration.

In a study by Mehrotra et al involving 91 cases, authors found that sensitivity of FNAC was 93.3%, specificity 94.5%, positive predictive value 87.5% and negative predictive value 97.2% 24. However only 65 cases out of total 91 cases underwent a histopathological examination.

Categorising cartilage lesions into benign and malignant groups posed particular difficulty in our study. Hypercellularity, plump nuclei, more than occasional binucleate cells, a permeative pattern, and entrapment of bony trabeculae are some of the features that diagnose a malignant bone tumours cannot be conclusively observed in fine needle aspirations. Three of our seven cases in the doubtful group consisted of these lesions. Other lesions that can have confusing features in aspirated smears are those which reveal giant cells under the microscope. Whereas the presence of the cohesive mononuclear cells amidst giant cells suggests an osteoclastoma, the absence of same opens the possibility of several lesions eg aneurysmal bone cyst, brown tumour of hyperparathyroidism, chondroblastoma etc. FNAC also failed to diagnose a case of expansile lytic lesion of the tibia of a five year old child whether it was Ewing’s sarcoma or neuroblastoma of the bone.

Analysing the false negative cases, an inflammatory lesion as diagnosed by FNAC was later recognised as an eosinophilic granuloma in successive open biopsy. The second case was misdiagnosed as osteomyelitis of the femur as the cells were interpreted as inflammatory cells which on biopsy revealed characteristic cytology of small round cell. The first false positive case was a swelling over the proximal tibia, the aspirate of which revealed bits of osteoid matrix, interpreted as osteosarcoma. However biopsy revealed its true nature a heterotropic ossification with
abundant callus formation as a healing response to a pathological fracture at the site of a simple bone cyst. Some of these cases reflected the fact that the importance of clinical radiological findings cannot be overemphasised. However, even core needle biopsy or open biopsy has considerable diagnostic limitations. The false positive and false negative cases in our study using FNAC correlate favourably when compared to those involving open or core needle biopsy.

Conclusion

Based on the finding of the study we propose the following recommendations:

1. FNAC should be performed as a first line diagnostic tool after clinico-radiological evaluation in cases of suspected bone tumours.
2. If the smears are adequate and give definitive diagnosis, the morbidities associated with a separate preoperative histopathological examination can be safely avoided by reserving the latter for very exceptional cases.
3. Separate preoperative histopathological examinations are indicated in the following situations:
 a. When there is disparity between clinicoradiological and cytopathological diagnosis
 b. When no definitive cytopathological diagnoses can be reached upon
 c. When smears are inadequate and repeat aspirations are unlikely to improve the yield.

References

Author Bibliography

Dr. Sabari Devi
Born in Guwahati and having studied in prestigious Cotton College, she completed her MBBS and MD in Pathology from Gauhati Medical College. She has worked in institutes like Deen Dayal Upadhyaya Hospital and Dr. Ram Manohar Lohia Hospital in New Delhi and Railway Hospital, Guwahati. She has also been trained in Histopathology Section from Tata Memorial Hospital. She presently works as an Associate Professor in the Department of Pathology, Gauhati Medical College. Her special areas of interest are tumour cytology, histopathology, cytogenetics and immunohistochemistry.

Dr. Sukalyan Dey
He holds a very keen interest in academics and research activities and has numerous publications and presentations in the field of spinal surgery, vascular surgery, congenital deformities and diseases in children. His other filed of interest are trauma management in adults and children, cerebral palsy, musculoskeletal oncology and deformity correction. He has been associated with Gauhati Medical College for last 12 years. He is presently working as a registrar in the Department of Orthopedics, Gauhati Medical College.

Dr. Partha Sarathi Chakrabarty
He completed his MBBS and MS degree in orthopedics from Gauhati Medical College. He has substantial teaching and academic experience in institutes like Sanjay Gandhi Memorial Hospital in New Delhi and in teaching hospitals like Silchar Medical College and Assam Medical College, Dibrugarh. He is presently working as an Associate Professor of Orthopedics in Gauhati Medical College. He is also a fellow in arthroscopy. He cultivates special interests in arthroscopy, sports medicine, musculoskeletal oncology, and skeletal trauma in adults and paediatric population.